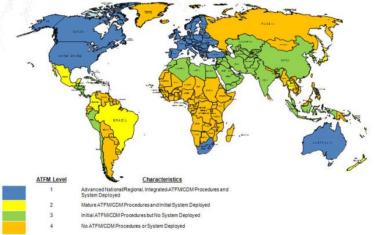


Concept of a Distributed Multi-Nodal ATFM Network

Outline


- 1. Introduction
- 2. Stakeholder Engagement in Concept Development
- 3. Concept of Operations
- 4. Benefits Analysis Singapore Case Study

Introduction

Purpose of R&D Project

- Develop a Concept of Operations (ConOps) for Regional ATFM/CDM for Singapore and the Asia Pacific Region
- Study existing ATFM/CDM concepts for potential implementation in Asia Pacific

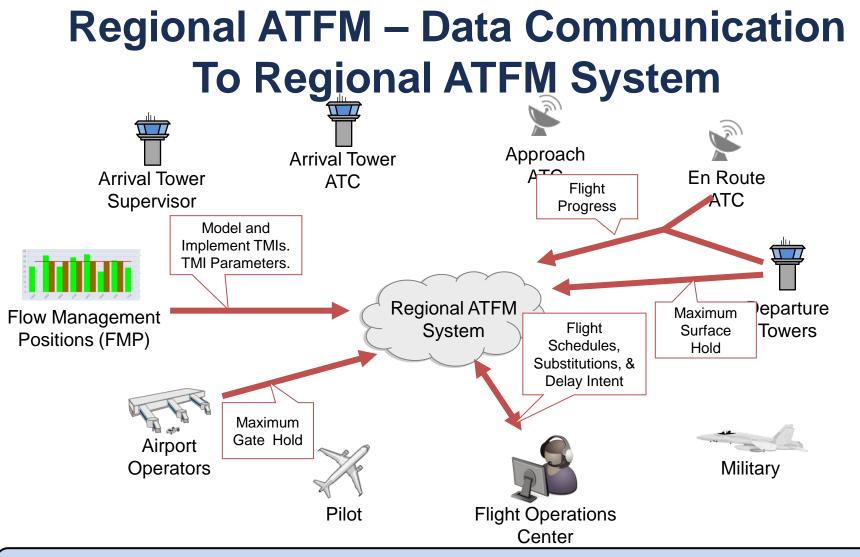
- Validate ConOps using proven Concept Engineering process
- Conduct analysis for the benefits of ConOps in Singapore

Use of Existing ATFM/CDM Methods

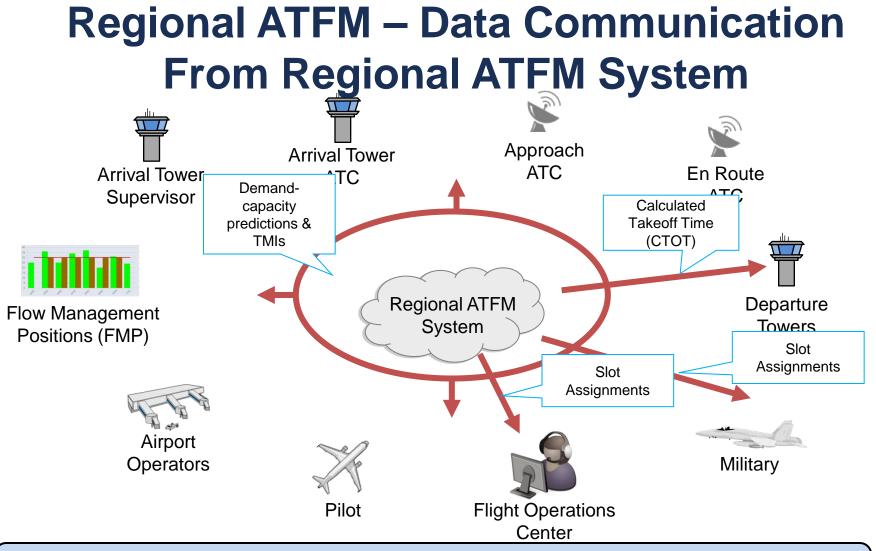
- ATFM Implementations Studied:
 - > USA, Europe, Australia, and South Africa

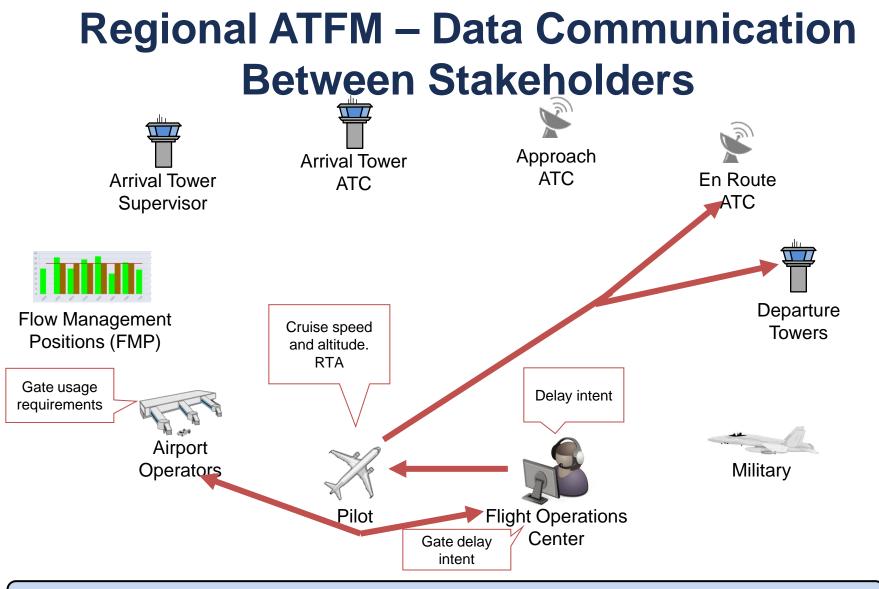
- Current ATFM implementations achieve demand and capacity balance when applied to flights regulated by a single authority
- Asia Pacific has a number of international hub airports with limited domestic traffic to apply existing ATFM principles
 - E.g. Hong Kong and Singapore are 100% international
 - Concept applicable to ANSPs with significant domestic traffic
- Concept must be developed to regulate flights to an airport with a demand and capacity imbalance departing from ANSPs under a different control authority

Regional ATFM Concept – Overview


- Enable demand-capacity balancing by implementing Traffic Management Initiatives (TMIs)
 - Accurate demand and capacity predictions
 - TMIs initiated when demand exceeds capacity
 - ✓ Assign flights to arrival slot times at the constrained resource
- Flights are expected to absorb delay assigned by the TMI
- High TMI participation is important for successful implementation
 - Means to increase participation
 - ✓ Include international flights
 - ✓ Provide aircraft operators flexibility to specify delay absorption intent
 - ✓ Include airborne flights
- Collaborative Decision Making (CDM)
 - Key aspect of successful ATFM

Regional ATFM Concept – Specifying Delay Intent


- Aircraft Operators are responsible for specifying delay absorption intent
 - Gate Delay
 - Airport Surface Delay
 - Airborne Delay
- Allowing absorption of TMI delay in the air is a new ATFM concept
 - Flights can efficiently increase their EETs by a few minutes per hour of flight time by reducing cruise speed
- Flights measured for compliance based on delay intent
 - A compliance window is provided to increase flexibility and account for variability



- Inputs from FMP and FOC via ATFM software interface
- Flight progress via manual input or data feed

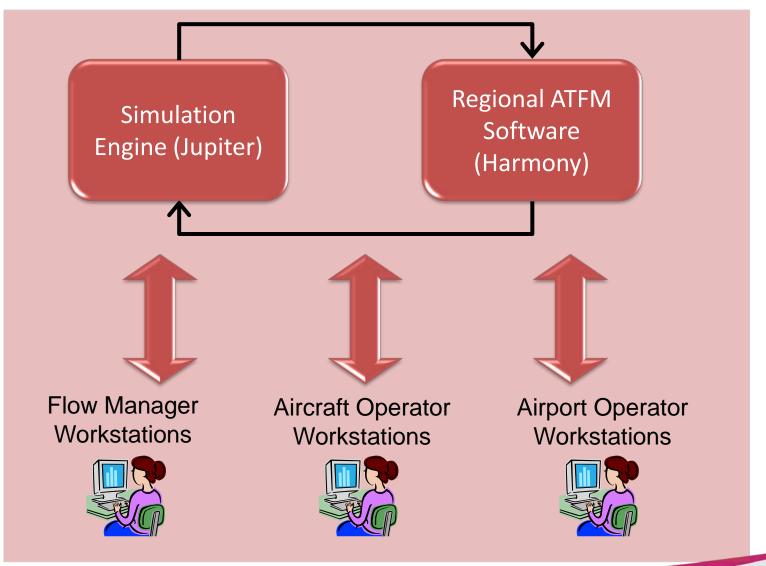
- Demand-capacity predictions are viewed via software interface
- Slot assignments can be viewed via software interface and notifications

Existing stakeholders use current communication methods

CAAS

Stakeholder Engagement in Concept Development

Stakeholder Involvement


- Stakeholder Groups
 - > ANSP (ATC)
 - Airlines
 - > Airports
- Sessions 1-5
 - Singapore Stakeholders
- Session 6 and 7
 - Tripartite ANSPs
 - AOT (Session 6 only)
 - DCA Malaysia
 - > IATA
 - > AATIP
 - FAA (Session 6 only)

Human In The Loop (HITL) Session Purpose

- Validate Regional ATFM/CDM Concept
 - Demonstrate importance of high participation
 - > Will operations improve with a Regional ATFM/CDM concept?
 - > Where can benefits be expected?
- Further refine Regional ATFM/CDM Concept
 - Each simulation exercise aims to answer specific ConOps questions
- Continue to build basis for joint understanding, acceptance and compliance to the jointly developed Concept

HITL Simulation Environment

CAAS

HITL Simulations

- 1. Regional ATFM Concept Overview
- 2. Participation
- 3. Short Lead Time
- 4. Non-Compliant Flights
- 5. Measuring Compliance
- 6. Special Case Flights
- 7. TMI Revisions

CAAS

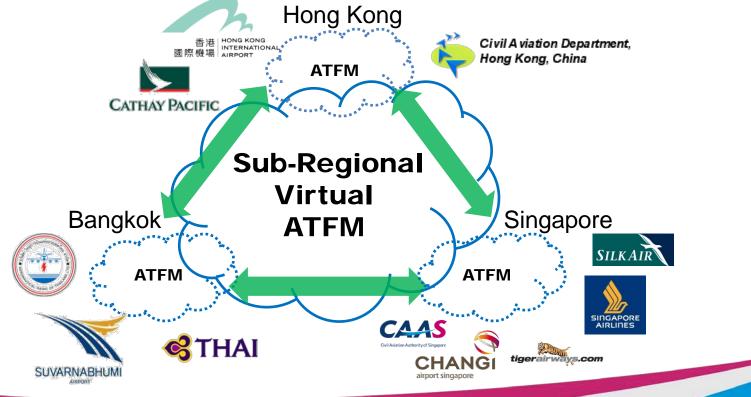
Concept Refinement Discussion

- Use flight plans to update delay intent whenever possible
- Flights given little lead time prior to the start of a TMI may not be able to hold on the ground
- In general, meeting compliance will be airlines' responsibility
- Short range flights could be measured for compliance at takeoff time
- Other flights measured for compliance at a point prior to TMA

Lessons Learned from HITL

- City-pair Traffic Management Initiatives (TMI) alone do not provide sufficient participation for effective ATFM
- Communication between ATC and weather services is important
- Stakeholders understand that successful implementation requires agreement to follow the business rules associated with the Regional ATFM concept

Concept of Operations



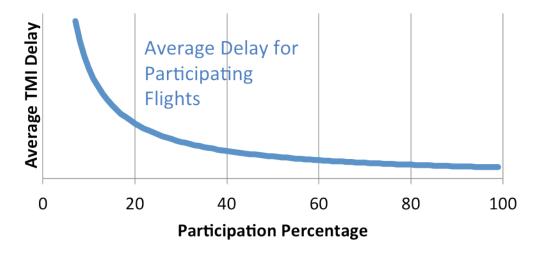
Concept of Operations Overview

- Motivation for ATFM/CDM
 - Increasing capacity can be costly and time consuming
 - Capacity reducing events can cause demand and capacity imbalances
- Foundation of Concept
 - ICAO ATFM Manual [Doc 9971]
 - \checkmark Guidance on implementing an ATFM system
 - > Existing ATFM systems in USA, Europe, Australia, and South Africa

Regional ATFM/CDM

- Concept adopted by ANSPs within region
 - Common concept across implementations
 - Each ANSP implements their own ATFM System and is responsible for managing flights to their resources
 - Data shared between ANSPs

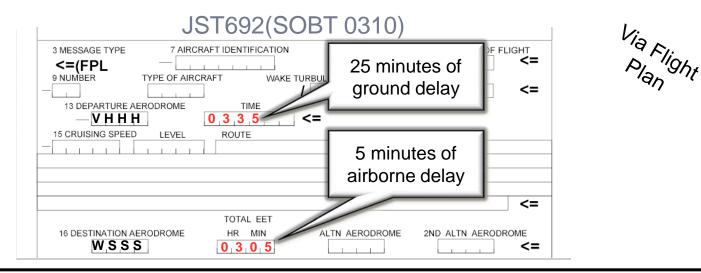
CAAS


Universal Concept Elements

Consistent Across Implementations

Concept Overview – Participation

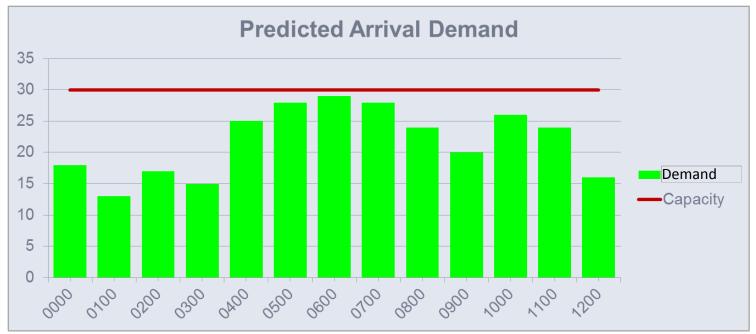
• Participation key for equitability and effectiveness


- Delay absorption intent
 - Aircraft Operators to identify flight phase where allocated delay will be absorbed
 - > Increases participation by:
 - ✓ Increasing flexibility for Aircraft Operators
 - ✓ Airborne flights are included in programs

Delay Absorption Intent

- Gate Delay Intent:
 - Parked at the gate
 - Default for pre-departure flights
- Airport Surface Delay Intent:
 - Between pushback and takeoff
 - Not part of any current, operational ATFM/CDM system
- Airborne Delay Intent:
 - During the cruise portion of flight
 - Default for flights airborne when Flow Program is run
 - Not part of any current, operational ATFM/CDM system

ACID:	<u>TGW2329</u>	OHOBT: 16/1045
Gate Delay Intent:	5	DLOBT: 16/1050
Surface Delay Intent:	10	DLTOT: 16/1105
Airborne Delay Intent:	5	DLLDT: 16/1237
Total Delay Intent:	20	DLIBT: 16/1247
Assigned Delay:	20	DLEET: 92


Submitting Delay Intent

vorites 🛛 🍰 🔚 Suga vil Aviation Authority o	gested Sites 👻 🔊 Web Slice G f Singapore	iallery -	👻 + 🕤 - 🖂 👼 - Page - Safety - Tools - 🕢 - 🤅				
CAAS A Aviation Authority of Singapore	Major: JST	TMI St	tart Time: 2013	-06-09 050	0 UTC		Via Web Interface
ACID	From	SOBT	TMI Delay	Gate Delay	ARPT Surface Delay	Air D 5 mir	utes of
JST134	YPPH	25 min		25	0	airbor	ne delay
JST762	RPLL	ground		30	0	7/	
JST692	VHHH	0310	30	25	0	6	
JST596	VYYY	0420	25	25	0	0	
JST686	WMKK	0635	25	25	Reset	Submit	

Specifying Demand and Capacity

- Many airports in APAC are IATA level 3 Slot Controlled Airports
 - Strategic demand and capacity balancing
- Demand and capacity predictions change based on forecasted weather and events

Initiating a Flow Program

CAAS

Maximum Delay

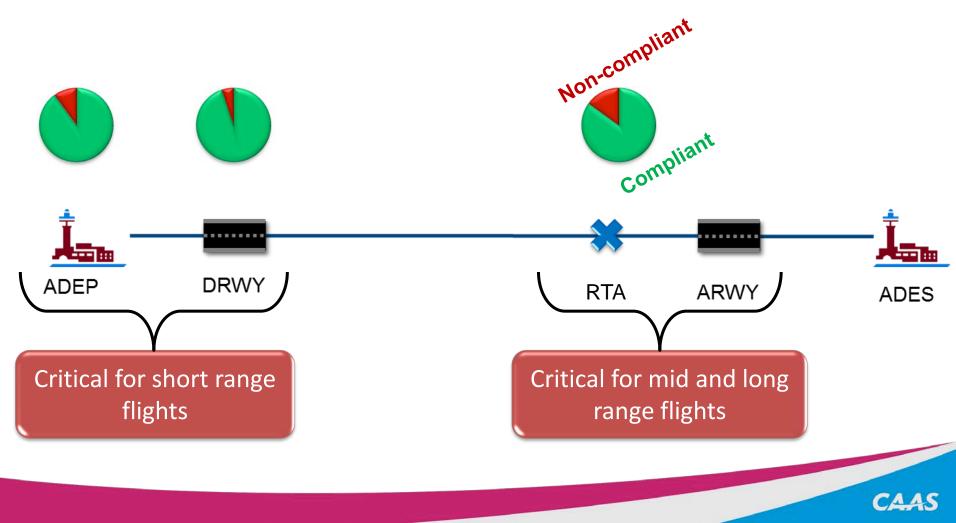
• Max Gate Hold

- Maximum delay that can be absorbed at gate
- Specified by Airport Operator
- Could be specified per airport/terminal and per time period
- Max Surface Hold
 - Maximum delay that can be absorbed between gate and takeoff
 - Specified by ATC
- Max Airborne Adjustment
 - ATFM/CDM estimation of practical range of efficient flight times
 - May be dependent on aircraft performance, filed cruise speed and altitude, and distance between origin/current location and destination

Collaborative Decision Making (CDM)

- Common situational awareness
- Substitution capability
- Participate in CDM conferences

Pre-Substitution


ACID	ADEP	СТОТ	ΑΤΟΤ	SLDT	CLDT	TMI Delay
CPA739	VHHH	0345		0705	0710	5
CPA713	VTBS	0455		0710	0720	10

Post-Substitution

ACID	ADEP	СТОТ	ΑΤΟΤ	SLDT	CLDT	TMI Delay
CPA739	VHHH	0355		0705	0720	15 (+10)
CPA713	VTBS	0445		0710	🍑 0710 🥖	0 (-10)

Compliance

- High compliance is critical to successful implementation
- Non-exempt flights measured for compliance

Post Operations Analysis

3 Hour Lead Time

Program Start

Program Run

- Flow Program Parameters
 - Start and stop time
 - Lead time
 - Number of flights
- Delay Metrics
 > Average delay
 - ➤ Total delay

- CDM Action Metrics
 - Number of substitutions
 - Number of delay intent modifications

87 Flights

Program End

Stakeholder Roles – Flow Management Position

- Monitor demand and capacity at resources in their jurisdiction taking following factors into consideration:
 - > Weather
 - Special usage of airspace
 - Resource outages/maintenance etc.
- Model and issue Flow Programs with appropriate parameters
- Monitor and revise programs as necessary
- Conduct post-operations analysis
- Chair teleconferences
- Ensure common situational awareness
- Coordinate with Aircraft Operators for special case flights

Stakeholder Roles – Aircraft Operators

- Provide initial and updated demand inputs to ATFM/CDM System
- Substitute and redistribute delay intent as needed
- Manage flight data
- FOC communicates delay intent to pilots
- Pilots comply with intent within ATC constraints
- Participate in CDM processes

Stakeholder Roles – Airport Operators

• Departure Airports

- Consider impact of Flow Programs on gate conflicts
- Coordinate potential gate conflicts with Aircraft Operators
- Submit Maximum Gate Hold values as needed
- Assist airlines with compliance
- Advise FMP of forecasted capacity constraints
- Arrival Airports
 - Consider impact of Flow Programs on turn-around times
 - Advise FMP of forecasted capacity constraints
 - Participate in teleconferences

Stakeholder Roles – ATC Tower

Departure Tower

- Assist flights to meet intended departure times
- Coordinate ground holds based on flight delay intent
- Submit Maximum Surface Hold as needed
- Participate in the CDM process

Arrival Tower

- Advise FMP of forecasted capacity constraints
- Participate in teleconferences
- Monitor Airport Acceptance Rate

Technology and Policy Changes

- New Technology Capabilities
 - Flow Program modeling capability
 - Automated ATFM slot assignment and delivery to appropriate stakeholders
 - Common situational awareness for demand, capacity, and flight updates
 - CDM platform to perform substitutions
 - Ability to perform post operations analysis
- Policy Changes
 - Measuring compliance to allocated ATFM slots
 - Data sharing
 - Teleconferences

Implementation Considerations

Flexibility for Customization Across Implementations

Implementation Considerations

Flexibility in implementation to meet needs of specific ANSP

- Compliance Handling
 - Role of departure towers
 - Penalties for non-compliance
- Performance Metrics and Post Operational Analysis
- Maximum Delay implementation
 - Shared
 - Demand predictions
 - Slot assignment

Concept Summary

- Concept derived from:
 - Experience from existing ATFM/CDM systems
 - Stakeholder participation
 - HITL simulation
- Unique Aspects
 - International flights included in slot allocation and delay absorption
 - Airborne flights included in slot allocation and delay absorption
 - Each ANSP responsible for managing TMIs within own FIR
 - Aircraft Operators specify delay absorption intent
- ConOps specifies areas that should be consistent across implementations and areas where ANSPs have flexibility

Benefits Analysis

Singapore Case Study

Benefits of ATFM

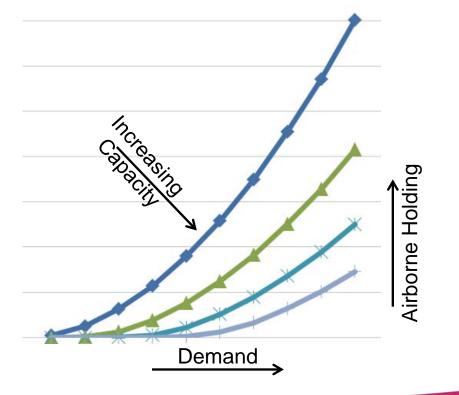
Qualitative

- Optimized Staffing Levels
 - De-peaking of traffic has resulted in reduction in supply of resources prior to ATFM/CDM implementation
 - ✓ Effective staff training planning
- Potential Increased Capacity
 - ✓ Smoother and more predictable flow of traffic

Benefits of ATFM

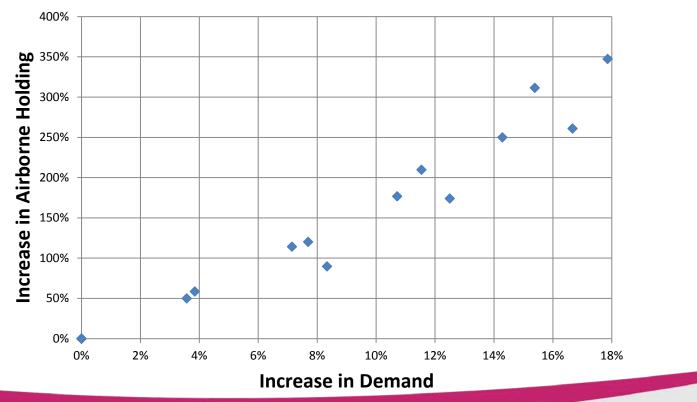
- Qualitative
 - Situational Awareness and Improved Predictability
 - Special Use of Airspace Facilitation
 - Reduced Sector Times
 - Enhanced Safety
 - ✓ Consistent orderly flow of traffic
- Quantitative
 - Fuel burn and emissions reduction

Quantitative Analysis – Determining Economic and Environmental Benefits


- Annual Airborne Holding is about 137,000 minutes
 - Annual potential fuel savings: 13.6 mil SGD
- Estimate of airborne holding savings
 - Estimate based on:
 - ✓ Sample size, fleet mix, and modeling fidelity
 - ✓ ATFM will not eliminate all airborne holding

Percentage of Airborne Holding Saved by ATFM	Fuel Savings (millions SGD)	Emissions Reduction (Metric Tonnes CO ₂)
3/4 (75%)	\$10	24,000
2/3 (66%)	\$9.0	22,000
1/2 (50%)	\$6.8	16,000
1/3 (33%)	\$4.5	11,000

Future Benefits Projections


- Airbus market forecasts project ~6% annual traffic growth for Asia Pacific Region
- As demand increases, delays increase at a faster rate, as do ATFM benefits

Airborne Holding with Projected Traffic Growth

- Fast Time simulation analysis shows that for Changi:
 - \succ 6% traffic growth \rightarrow 75% increase in airborne holding
 - > 12% traffic growth \rightarrow 175% increase in airborne holding

Fast Time Simulation Results

Projected Benefits in 2015 Assuming 6% Growth

- Annual Airborne Holding is about 240,000 minutes
 - Annual potential fuel savings: 24 mil SGD

Percentage of Airborne Holding Saved by ATFM	Fuel Savings (millions SGD)	Emissions Reduction (Metric Tonnes CO ₂)
3/4 (75%)	\$18	43,000
2/3 (66%)	\$16	39,000
1/2 (50%)	\$12	28,000
1/3 (33%)	\$7.9	19,000

Airborne holding projections further into the future are expected to grow more slowly than the simulation projected due to capacity enhancements and curbing of demand growth

Thank You

Civil Aviation Authority of Singapore